بحث البرهان الجبرى جاهز

بحث البرهان الجبرى جاهز ، يحتوى البراهين العديد من الامثلة التى تعد ضمن الحضارات الفرعونية القديمة والحضارات البابلية ، كما تعتمد البراهين على المتغيرات التى تعبر عنها بعض الرموز والعلاقات الرياضية ، وذلك بهدف الوصول الى اثبات المسائل الرياضية المختلفة ، اذاً الدليل الرياضى ليس تجريبياً ولكن يجب ان يثبت رياضياً بالبراهين ، وسوف نقوم بشرح البرهان الجبرى بالتفصيل فى هذا المقال .

بحث البرهان الجبرى جاهز : مقدمة عن البرهان الجبرى

  • يعتبر البرهان الجبرى نظام رياضى متبع ومعتمد على الرموز الرياضية والعمليات الحسابية ، وذلك لاثبات الحسابات الجبرية بطرق مختلفة ومتنوعة .
  • يعتمد البرهان الجبرى على الرموز والفروض الرياضية التى تعبر عن النتاج المتغيرة ، كما تعتمد أيضاً على اثبات صحة المسائل الجبرية .
  • يعمل البرهان الجبرى على حل المسائل التى تحتاج الى برهان لاثبات صحتها او خطأها .

بحث البرهان الجبرى جاهز : معنى البرهان الجبرى

بحث البرهان الجبرى جاهز
بحث البرهان الجبرى جاهز

تعبر الرموز التى يتعامل معها البرهان الجبرى عن كميات غير محدودة وتعرف تلك الرموز بالمتغيرات ، كما يتم فيها دراسة كيفية التعامل مع تلك المتغيرات والتى يعبر عنها بالعديد من الرموز الرياضية عند وجودها فى معادلات رياضية لأجل الوصول الى القيم التى تعد حل لهذه المعادلات ، والجدير بالذكر ان الجبر يكون مرتبط بالعمليات الرياضية مثل عملية الضرب والقسمة والجمع والطرح والجذوز أيضاً التكعيبية والتربيعية ، كما تستخدم البراهين الجبرية فى الكثير من المجالات كالتنبؤ بالمبيعات التابعة للأنشطة التجارية .

قد يهمك :

بحث رياضيات اول ثانوي التبرير والبرهان

بحث البرهان الجبرى جاهز : تاريخ البرهان الجبرى فى الرياضيات

  • ظهر علم الجبر مع ظهور الحضارة البابلية والحضارة الفرعونية القديمة ، حينها اهتموا بدراسة المعادلات المختلفة سواء كانت تربيعية او خطية ، كما قاموا ايضاً بدراسة المتغيرات وارموز الرياضية المختلفة وذلك بهدف الوصول الى نظيات وحلول علمية .
  • اهتم الهنود بدراسة علم الجبر والبرهان الجبرى ، حيث قام العالم الهندى بوزاهيانا وهو من اشهر العلماء الهنود قديماً بوضع براهين جبرية التابعة لنظرية العالم فيثاغورث وكانت تختص دراسته باضلاع وزوايا المثلث ، وذلك فى عام 800 قبل الميلاد .
  • قام العالم الرياضى الخوارزمى باستخدام مصطلح الجبر فى دراسته وكتبه ، فقد قام بكتابة “المختصر فى حساب الجبر والمقابلة” الكتاب الذى اسس علم الجبر ، وكان ذلك فى عام780 .
  • تم انتشار علم الجبر من العالم العربى الى العالم الاوروبى ، وذلك بعد ترجمة علم الجبر على يد العالم الايطالى فيبوناتشى قام بترجمتها فى عام 1170ميلادياً ترجم بعض الكتب العربية التى تحدثت عن علم الجبر ، وانتشر هذا العلم واصبح له العديد من المهتمين بذلك العلم .
  • ثم بعد ذلك تطور علم الجبر بشرعة على يد الكثير من العلماء الاوروبين والاجانب مثل العالم باولو روفيني ، والعالم ارس ماجنا ، والعالم رينيه ديكارت ، والعالم جورج بيكوك ، والعالم سيكي كوا ، والعالم جوزيف لويس لاغرانج ، والعالم غابرييل كرامر ، والعالم جوزيه غيبس ، والعالم غوتفريد لايبنيز  ، وغيرهم من العلماء الذين قاموا بكتابة العديد من الكتب المخصصة لعلم الجبر ، وتحدثوا بالتفصيل عن علم البراهين والمعادلات والرموز الرياضية ، كما تحدثوا ايضاً عن النظريات الرياضية الحديثة واسس علم الرياضيات .

و قد تم اثبات ان النظرية فشلت ولاتصلح ، وان العالم ليس لديه القدرة على تطبيقها و تعميمها على جميع المعادلات الحسابية ، والرموز المختلفة ، و يمكن اثبات صدق او كذب فرضية ما باستخدام البراهين الجبرية .

تعرف أيضاً على :

بحث البرهان الجبرى جاهز

بحث البرهان الجبرى جاهز : امثلة على البرهان الجبري

اعتماداً على البرهان الجبرى يتم اثبات صحة الكثير من المعادلات الرياضية المهمة ، ومن ابرز هذه المعادلات اثبات ان مجموع عددين زوجيين ينتج عنهما عدد زوجى آخر ، واستناداً الى صحة ما سبق نفترض مثلاً ان العدد الاول 2 ن ، والعدد الثانم هو 2 م ، وبما ان كلا العددت ن ، م هى اعداد صحيحة فإن جمعهما 2ن+2م=2(م+ن) ، اى مجموعهما مضروباً فى رقم 2 ، وبالتالى يتأكد لنا صحة المعادلة وان مجموع العددين الزوجيين ينتج عنهم رقم زوجى .

بحث البرهان الجبرى جاهز : امثلة على الحسابات الجبرية

بحث البرهان الجبرى جاهز
بحث البرهان الجبرى جاهز
  • كما اتضح من قبل ان البرهان الجبرى يعتمد على الحسابات الجبرية ، وذلك لتحديد العلاقة بين المعادلات ، و اكبر مثال على هذا لاعبى كره السلة ، و الذين يعتمدون على تلك الحسابات الجبرية لكى يحسبو النقاط في المباريات .
  • يستخدمون الاطفال ايضا من دون قصد الحسابات الجبريه ، و ذلك للتعرف على المسافة بينهم و بين لعبه محددة .
  • يستخدمون الكلاب الحسابات الجبرية و ذلك لالتقاط الاكل فى الوعاء الموضوع امامهم .

بحث البرهان الجبرى جاهز : اهميه البرهان الجبرى

يتضمن البرهان الجبري اهميه كبيرة تتمثل في :

  • يعتبر البرهان الجبرى واحد من اهم العلوم المستخدمه في الحياه العمليه .
  • يقوم البرهان الجبرى بتفسير القواعد الجبريه في علوم الرياضيات .
  • يساعد البرهان الجبرى في وضع الحسابات المتعددة ، و ذلك لتغطيه النفقات لتجنب حدوث خسارة ، كما يتم الاعتماد عليه فى وضع حساب الشركات الكبيرة و الصغيرة ايضا للتعرف على الارباح و الخسائر و المبيعات .
  • تتضمن اهميه البراهين الجبريه فى ان كل اجهزة الحاسب الالى ، و الشاشات ، و التلفزيون ، و الهواتف المحمول تكون معتمدة على البرهان الجبرى في جميع العمليات الخاصة بها .

شاهد أيضاً :

انواع البراهين في الرياضيات

بحث البرهان الجبرى جاهز : انواع البراهين في علم الرياضيات

=
بحث البرهان الجبرى جاهز
بحث البرهان الجبرى جاهز

تتنوع و تختلف انواع البراهين في علم الرياضيات التى يعتمد عليها في حل المسائل الحسابيه و الرياضية ، كما تقوم ايضا بتفسير النظريات المتنوعه و الوصول الى الحقائق و اثبات صحتها بقدرة العقل ، و سوف نعرض لكم من خلال النقاط التاليه اهم و اشهر انواع البراهين الرياضية .

البرهان الجبرى 

  • لقد ذكرنا لكم من قبل في الفقرات السابقة من هذا المقال ان البرهان الجبرى يعتمد على استخدام الرموز الرياضيه و ذلك لاثبات صحة الرياضيات او خطأها .
  • يقوم البرهان الجبرى بتحليل العلاقة بين الرموز الرياضية لكي يتم الوصول لصحة النظرية الصحيحة او اثبات عكس ذلك .

البرهان الاحداثى 

  • يستخدك ذلك البرهان فى النقاط الموجودة على المستوى الديكارتى و ذلك لاثبات صحة حل المسأله الرياضية .
  • يعتمد البرهان الاحداثى على المعادلات لاثبات صحة نظريه المتوسطات الخاصه بالمثلثات .

البرهان بالتناقض 

يعتبر البرهان بالتناقض هو نوع من انواع البراهين التى يعتمد عليها فى الفرضيه الرياضيه ، و التى قد تم الاشارة اليها بأنها خاطئة ثم بعد ذلك عند اثبات خطأ الفرد يتم اثبات صحة الفرضيه الرياضيه انطلاقا من ان المتناقضين لا يرتفعان و لا يجتمعان معا .

و فى نهايه هذا المقال الذى تحدثنا فيه عن بحث البرهان الجبرى نكون قد عرضنا لكم اهميه و تعريف البرهان الجبرى و مدى اهميته في حاتنا ، لاثبات اى قيود جبريه و حل المسائل الرياضيه ، فمن المهم ان لا نطرق اى نظريه مسلم بها بدون اثباتها بالبرهان الجبرى عن طريق حلها بالرموز و التى تسهل علينا حل المسائل الرياضيه ، و وضع برهان جبرى و اثبات اثبات حلها ، و يظل مجال الجبر مجال واسع للبحث و الاستقصاء ، و ذلك لوضع فرضيات رياضيه و اتيانها و اثباتها بالبراهن الجبريه .